搭配机器人的效用在很大程度上取决于人类的简单和直观的相互作用机制。如果机器人在自然语言中接受任务指令,首先,它必须通过解码指令来了解用户的意图。然而,在执行任务时,由于观察到的场景的变化,机器人可能面临不可预见的情况,因此需要进一步的用户干预。在本文中,我们提出了一个称为谈话的系统,该系统使机器人能够通过在视觉上观察僵局来启动与教师的相干对话交换。通过对话,它要么在原始计划中找到一个提示,它是一个可接受的替代原始计划的替代方案,或者完全肯定地中止任务。为了实现可能的僵局,我们利用观察到的场景的密集标题和给定的指令,共同计算机器人的下一个动作。我们基于初始指令和情境场景对的数据集评估我们的系统。我们的系统可以识别僵局,并以适当的对话交换来解决82%的准确性。此外,与现有技术相比,用户学习表明,我们的系统的问题更自然(4.02平均为1到5的平均值)(平均3.08)。
translated by 谷歌翻译
演员 - 评论家(AC)算法以求解钢筋学习问题而闻名,但它们也遭受了低采样效率。基于AC的策略优化过程是迭代的,并且需要经常访问代理环境系统来通过推出策略,收集奖励和状态(即样本)来评估和更新策略,并从中学习。它最终需要大量的样本来学习最佳政策。为了提高采样效率,我们提出了一种策略来优化培训数据集,该数据集含有从AC过程中收集的显着较少的样本。数据集优化由仅限最佳剧集操作,策略参数 - 健身模型和遗传算法模块。与控制自主动态系统的许多当代AC算法相比,由优化的训练数据集训练的最佳策略网络表现出优越的性能。标准基准测试的评估表明,该方法提高了采样效率,可确保更快地收敛到Optima,并且比其对应物更具数据效率。
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
Migraine is a high-prevalence and disabling neurological disorder. However, information migraine management in real-world settings could be limited to traditional health information sources. In this paper, we (i) verify that there is substantial migraine-related chatter available on social media (Twitter and Reddit), self-reported by migraine sufferers; (ii) develop a platform-independent text classification system for automatically detecting self-reported migraine-related posts, and (iii) conduct analyses of the self-reported posts to assess the utility of social media for studying this problem. We manually annotated 5750 Twitter posts and 302 Reddit posts. Our system achieved an F1 score of 0.90 on Twitter and 0.93 on Reddit. Analysis of information posted by our 'migraine cohort' revealed the presence of a plethora of relevant information about migraine therapies and patient sentiments associated with them. Our study forms the foundation for conducting an in-depth analysis of migraine-related information using social media data.
translated by 谷歌翻译
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.
translated by 谷歌翻译
'Actions' play a vital role in how humans interact with the world. Thus, autonomous agents that would assist us in everyday tasks also require the capability to perform 'Reasoning about Actions & Change' (RAC). This has been an important research direction in Artificial Intelligence (AI) in general, but the study of RAC with visual and linguistic inputs is relatively recent. The CLEVR_HYP (Sampat et. al., 2021) is one such testbed for hypothetical vision-language reasoning with actions as the key focus. In this work, we propose a novel learning strategy that can improve reasoning about the effects of actions. We implement an encoder-decoder architecture to learn the representation of actions as vectors. We combine the aforementioned encoder-decoder architecture with existing modality parsers and a scene graph question answering model to evaluate our proposed system on the CLEVR_HYP dataset. We conduct thorough experiments to demonstrate the effectiveness of our proposed approach and discuss its advantages over previous baselines in terms of performance, data efficiency, and generalization capability.
translated by 谷歌翻译
'Actions' play a vital role in how humans interact with the world. Thus, autonomous agents that would assist us in everyday tasks also require the capability to perform 'Reasoning about Actions & Change' (RAC). Recently, there has been growing interest in the study of RAC with visual and linguistic inputs. Graphs are often used to represent semantic structure of the visual content (i.e. objects, their attributes and relationships among objects), commonly referred to as scene-graphs. In this work, we propose a novel method that leverages scene-graph representation of images to reason about the effects of actions described in natural language. We experiment with existing CLEVR_HYP (Sampat et. al, 2021) dataset and show that our proposed approach is effective in terms of performance, data efficiency, and generalization capability compared to existing models.
translated by 谷歌翻译
This paper aims to provide an unsupervised modelling approach that allows for a more flexible representation of text embeddings. It jointly encodes the words and the paragraphs as individual matrices of arbitrary column dimension with unit Frobenius norm. The representation is also linguistically motivated with the introduction of a novel similarity metric. The proposed modelling and the novel similarity metric exploits the matrix structure of embeddings. We then go on to show that the same matrices can be reshaped into vectors of unit norm and transform our problem into an optimization problem over the spherical manifold. We exploit manifold optimization to efficiently train the matrix embeddings. We also quantitatively verify the quality of our text embeddings by showing that they demonstrate improved results in document classification, document clustering, and semantic textual similarity benchmark tests.
translated by 谷歌翻译
We seek to impose linear, equality constraints in feedforward neural networks. As top layer predictors are usually nonlinear, this is a difficult task if we seek to deploy standard convex optimization methods and strong duality. To overcome this, we introduce a new saddle-point Lagrangian with auxiliary predictor variables on which constraints are imposed. Elimination of the auxiliary variables leads to a dual minimization problem on the Lagrange multipliers introduced to satisfy the linear constraints. This minimization problem is combined with the standard learning problem on the weight matrices. From this theoretical line of development, we obtain the surprising interpretation of Lagrange parameters as additional, penultimate layer hidden units with fixed weights stemming from the constraints. Consequently, standard minimization approaches can be used despite the inclusion of Lagrange parameters -- a very satisfying, albeit unexpected, discovery. Examples ranging from multi-label classification to constrained autoencoders are envisaged in the future.
translated by 谷歌翻译
Many modern computer vision algorithms suffer from two major bottlenecks: scarcity of data and learning new tasks incrementally. While training the model with new batches of data the model looses it's ability to classify the previous data judiciously which is termed as catastrophic forgetting. Conventional methods have tried to mitigate catastrophic forgetting of the previously learned data while the training at the current session has been compromised. The state-of-the-art generative replay based approaches use complicated structures such as generative adversarial network (GAN) to deal with catastrophic forgetting. Additionally, training a GAN with few samples may lead to instability. In this work, we present a novel method to deal with these two major hurdles. Our method identifies a better embedding space with an improved contrasting loss to make classification more robust. Moreover, our approach is able to retain previously acquired knowledge in the embedding space even when trained with new classes. We update previous session class prototypes while training in such a way that it is able to represent the true class mean. This is of prime importance as our classification rule is based on the nearest class mean classification strategy. We have demonstrated our results by showing that the embedding space remains intact after training the model with new classes. We showed that our method preformed better than the existing state-of-the-art algorithms in terms of accuracy across different sessions.
translated by 谷歌翻译